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Abstract

Department

We developed and implemented a highly parallel computational algorithm for solu-

tion of the inverse scattering problem generated when an integrated circuit is illuminated

by laser. The method was used as part of a system to measure diffraction grating line

widths on specially fabricated test wafers and the results of the computational analysis

were compared with more traditional line-width measurement techniques. We found we

were able to measure the line width of singly periodic and doubley periodic diffraction

gratings (i.e. 2D and 3D gratings respectively) with accuracy comparable to the best

available experiment al techniques.
We demonstrated that our parallel code is highly scalable, achieving a scaled parallel

efficiency of 90% or more on typical problems running on 1024 processors. We also,
made substantial improvements to the algorithmic and our original implementation of

Rigorous Coupled Waveform Analysis, the underlying computational technique. These
resulted in computational speed-ups of two orders of magnitude in some test problems.

By combining these algorithmic improvements with parallelism we achieve speedups of

between a few thousand and hundreds of thousands over the original engineering code.

This made the laser diffraction measurement technique practical.

1 Parallel Computing Sciences Department, Mailstop 0441, (505) 845-8439, leland@sandia.gov.
2 Advanced Radiation Hardened CMOS Technologies Department, Mailstop 1074, (505) 844-7865,

draperbl@sandia.gov.
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1. Background. When an integrated circuit is illuminated by laser, an interfer-

ence pattern is created in the diffracted light. Geometric properties of the chip surface

can, in principle, be inferred from computational analysis of the scattered radiation;

this information can then be used to monitor and improve process quality. In most

conventional methods of monitoring the chip patterning processes, wafers are removed

from the line following key steps and inspected using standard white light microscopy -

a technique that is straightforward but which yields only one-dimensional information.

Other more rigorous inspection/measurement techniques used in the IC industry (e.g.

scanning electron microscopy) can give 3D information but are very time consuming

and destructive. With the new laser diffraction method described in this report, a chip

can be tested rapidly, automatically and non-destructively at many stages of process-

ing. When mature, this technology is expected to decrease costs, speed process flow

and increase yield, and hence be of substantial economic significance.

Prior to the work described in this report, The University of New Mexico (UNM)

had developed a prototype of the necessary laser scattering hardware and had used

this successfully to make ID measurements on chips etched with simple diffraction

gratings [1, 6]. This work, however, relied for solution of the inverse problem on an

analytical result which does not hold for measurement of 2D or 3D samples. In the

higher dimensions the only known method of solving the inverse scattering problem

was and is to solve the forward problem repeatedly and use each newly calculated field

to improve the previous approximation to the true geometry.

Simple estimates showed that this iterative method would clearly require supercom-

puting capacity, and Sandia’s experience at the Massively Parallel Computing Research

Laboratory (MPCRL) indicated that use of a parallel supercomputer would likely result

in a faster solution at much lower cost than use of a traditional vector supercomputer.

Hence there was a natural way to cooperate on the solution.

2. Project Summary. When we began, we were primarily interested in showing

that the inverse problem was tractable by any means. We believed that eventually we

could produce a highly efficient parallel algorithm that would run on a supercomputer

stationed at the fabrication facility. Accordingly, we were aiming at a “proof of concept”

result, and our goals were to:

●

●

●

To

Devise a highly parallel solution of the inverse scattering problem and imple-

ment it on Sandia’s 1024 node Ncube2 parallel supercomputer.
Confirm the accuracy of the technique by analyzing an array of samples fabri-
cated in Sandia’s Microelectronic Development Laboratory (MD L).

Establish that the algorithm’s performance scaled with the number of proces-

sors used and hence demonstrate the capability to solve realistic problems given

sufficient resources.

accomplish these goals we envisioned the following: A serial code developed
at the University of New Mexico for the 2D forward scattering problem would be re-

structured to handle the 3D problem and run on the Ncube2. The code’s direct linear
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solver would then be replaced with an asymmetric Krylov solver employing polynomial

preconditioning since these rely on repeated matrix-vector multiplication, an operation

which parallelizes well. The code would then be tuned until it was fast enough to serve

as the kernel in an iterative method for solving the inverse problem. The iterative algo-

rithm for solving the inverse problem would be developed jointly with electromagnetic

experts at UNM while appropriate 3D test samples were designed and fabricated in

Department 2131 at Sandia. Data would be collected on the chip samples using the

interferometry apparatus at UNM and fed into the full code. The code predictions
would then be checked against measurements taken by conventional means. Once the

code was verified, its scalability would be established using the modeling techniques

developed in [3].

As the work progressed, we realized there was a more practical paradigm we could

follow. In the procedure described above, each inverse problem is solved independently

of previous work by a presumably relatively small number of functional evaluations.

This is the appropriate approach when the number of mask designs to be considered

is large, and there are relatively few of each design produced. This fit the production

pattern at the MDL where production is highly customized and lot sizes are very small.

But in a more typical industrial setting, one mask is used for very high volume pro-

duction. In that setting, each inverse problem is solved using a small number of function

evaluations also, but these function evaluations are computed in a relatively restricted

parameter space corresponding to the known or expected variations experienced with a

given mask or fabrication technology. This means in practice that the effective domain

of the scattering solutions is known a-priori, and also that there is significant overlap in

the scattering solutions required when computing a large number of inverse solutions.

The right strategy, therefore, in a high volume production setting is to pre-compute

this space of scattering solutions and use a table look-up in the inverse solution phase.

This approach made the parallel computing aspect of the problem much easier as we

could, once we did a little work to fit the calculations corresponding to one point in the

parameter space on a single processor, simply divide up the parameter space across the

processors in order to compute the look-up table. Hence emphasis shifted to whether we

could go a step further then originally envisioned and demonstrate a prototype system

that would not require the fabrication facility to maintain a supercomputing capability.

In subsequent discussion, we developed the following conceptual design for such

a system: A Computer Aided Design (CAD) mask far a new chip containing an ap-

propriate test pattern would be submitted to a large multiprocessing system (at, e.g.,

the MP CRL) and a concise list of a few hundred neural network training parameters

returned. These parameters would be fed into a small computer attached to a laser in-

terferometry apparatus which fired at each chip as it passed down the production line.

Chips that did not meet specification would be detected and rejected in real-time by

the small computer running a neural network pattern matching algorithm. Appendix 1

shows a schematic of the system corresponding to this conceptual design.
At the end of the first year, we had passed the following milestones in

of this system:
development
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●

●

●

●

●

Designed in the MDL a mask for the special test chip required.

Adapted the code solving the 2D forward electromagnetic scattering code to

run in parallel on the Ncube2 hypercube multiprocessor with high parallel

efficiency and nearly perfect scalability.

Derived the appropriate 3D electromagnetic scattering equations (a significant

extension from the 2D case),

Implemented a pattern matching neural network which used the output of the

2D forward scattering code to solve the inverse scattering problem.

Compared the output of the neural network with that of a classical pattern

matching technique (linear least squares) and experimental results (from UNM’S

apparatus) and found excellent agreement,

Hence we deviated, as discussed previously, from the original plan in two important

ways:

●

●

We used a more straightforward parallelism than we originally planned in

adapting the 2D forward scattering code to the Ncube. This was more efficient

and natural in the 2D case, but it was not clear whether a similar simplification

would be possible in the 3D case.

We decided to investigate using a Multilayer Perception neural network to

implement the pattern matching algorithm. This approach was not mentioned

in the original proposal, and it was not clear that its use in solving the inverse

problem was justified. On simple problems the classical linear least squares

approach actually worked better. But the neural network approach offered an

attractive flexibility, and we felt that on more difficult or higher dimensional

geometries, it might also work better.

In the second year, we accomplished the following:

●

●

●

●

Fabricated a test chip from mask.

Implemented the 3D forward electromagnetic scattering equations in serial.

Converted the 3D serial code to run in parallel on the Ncube2.

Used the 3D forward scattering data to train and test the neural network
designed to solve the inverse problem.

Compared the neural network and classical results pattern matching algorithm

test results.

Verified the pattern matching code on the test chip.

The major developments here were:

We determined that the classical pattern matching technique was preferable to

the MLP neural network approach since it achieved comparable results more

simply and efficiently.

We showed that we were able to measure diffraction

accuracy comparable to the best previously existing

desirable because they are either invasive or require

grating parameters with

methods (which are less

human intervention and
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hence are disruptive of production flow).

3. Technical Detail.

3.1. Improvements in RC WA Technique. The theory underlying our compu-

tational work is known as Rigorous Coupled Wave Analysis (RCWA) and is best laid

out by Moharam and Gaylord [5]. We describe several improvements and extensions

assuming their development and not ation.

The RC WA technique relies crucially on the computation of eigenvalues of a struc-

tured matrix and the solution of an associated linear system. Most of the compute time

is spent in either the eigensolve on the matrix A or the linear solve on the matrix Q.

Hence we tried to reduce the time spent in these kernels. We found four ways to do

this:

Method 1: One method is based on the observation that not all modes must be

retained in the analysis. A plot of the minimum absolute value and minimum imaginary

value of the eigenvalue for each mode number m (where A is of dimension 2m) shows

that these quantities become nearly constant after a certain mode number, suggesting

that the eigenvalues having the lower absolute value dominate system behavior.

In order to verify this, we ran the forward scattering program for sufficiently large

number of modes and constructed the Q matrix starting from the lowest eigenvalues.

We plotted the power diffracted in the various propagating modes and noted that this

tended toward a constant. The power diffracted in the various modes is nearly the

same in both cases after a certain mode number, supporting the conjecture that the

lower absolute value eigenvalues dominate. Hence we could solve for the eigenvalues just

once and iterate the linearsolve subroutine until the power diffracted in the propagating

modes became constant.

A simple complexity analysis shows that this method is indeed faster than the pre-
vious method. In the original algorithm, the number of modes to retain, m, is selected,

then the A matrix is constructed, The eigenvectors of A are computed, requiring to first

order 40m3 work. The eigenvectors are used to construct the linear system with matrix

operator Q. This system is solved, requiring to first order 64.M3 work. If the diffracted

power has not converged, m is increase by 2 and the process is repeated. In the modi-

fied approach, the eigenvectors are computed just once. Suppose it takes p iterations to

obtain convergence in the power diffracted in the modes. Then to first order the time

taken in this portion of the original program is proportional to 104 ~~~~-l(m + 2i)3.

With the modified approach, the time is proportional to 40m3 + 64 ~~~~-1 (m + 2i)3.

Hence the ratio R of the time of the modified case over the original is

(1) R = .615+ .385 ._
m’

~~~~-l(m + 2i)3

hence the new method may be as much as 1.6 times faster than the old.
Method 2: The second way to reduce the compute time is to effectively reduce

the dimensionality of the eigenproblem to be solved. Consider the second order differ-
ential equation implemented by the forward scattering program using the state-variable
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method as described in [5]:

(2) d’s;(.z)/dz’ – j2k#is~(2)/dZ = (k:i + k:o)s~(z) – k’ ~ 6p(z) s;_p(2)
P

Defining the state-variables as S1,i(Z) = SZ(Z) and S2,i = cLS’i(Z)/dz transforms

this set of second order differential equations into two sets of first order differential

equations. Implementing this in matrix form, the system can be written 1 = AS’,

where A is the system matrix whose eigenvalues we determine. This matrix has a

definite structure independent of dimension. For example, for m = 3

(3)

[

000100
000010

A=
000001

dlala2b O0

[

ald2a1060

a2ald300b

where b = j2kzo.

We have to solve the system (A – Af)Z = O, where

–Ao o 1 0 0
0 –Ao o 1 0

(4)
–A o 0 1

(A - AI)= ;1 :1 [1AI

(z2 b–~ O 0 ‘YB
al d2 al O b–~ O

a2 al d3 O 0 b–~

and A, 1, Y and B are all, more generally, of dimension m x m. An equivalent system

is

(5)

Multiplying on the left by

(6)

we arrive at the system

[1T B ;=O

AI.

HI–B’

01

[

Y–BAI O 1(7)
A I ‘=O.

The eigenvalues can thus be determined by evaluating, IAB – T\ = O where

Vi E (l, m), ABi,; = –A(j2kzo – A) = A’ – Aj2k,o. Therefore we need only find

the eigenvalues of the Y matrix and then compute the eigenvalues of the full matrix,
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A, using the quadratic formula ~2 – Aj2kz0 – q = O where al is the lt~ eigenvalue of

the Y matrix, i.e.

Hence we have effectively halved the dimensionality of the eigenproblem to be solved.

Since this is a cubic operation, this saves us about a factor of 8 in work associated with

solving the eigenproblem.

Method 3: A third way is to select the value of m which would give convergence in

the diffracted power with minimal iteration over the linear solve. We start by trying to
develop a physical interpretation of our representation of the electric field in the grating

region:

(9) E = ~ Si(z) exp[–j(k.iz + kzoz)]
i

On substitution of (9) in the wave equation we get (2), whose eigenvalues we evaluate.

Thus the it~ space harmonic is given by

with 1 # O. If we substitute (10) and (8) in (9) we can write the electric field in the

grating region

(11) E = ~ ~ Clxil exp[+z~-exp[–j( k=iz)]
i —/

again with Z# O. Since the field is represented as sum of infinite number of modes, for

any ith mode we can write

where cl = m Now consider the following grating cases.

Loss/ess grating: In this case the eigenvalues of the Y’ matrix are always real, and

they always increase monotonically, starting from a negative value. So ~ will be initially

imaginary and will become real as m increases. Therefore the representation of each

mode will cent ain finite imaginary exponential factors and infinite real exponential

factors. We conjecture that convergence starts when all the imaginary exponential

factors are included in the sum, so the minimum value of m will be that which makes

< real. This conjecture is verifiable by plotting the data from the forward scattering

program. Using this method we find the minimum mode number to start from and we

rapidly get convergence in the diffracted power a few modes above this mode number.

Lossy grating: The eigenvalues of the T matrix are complex in this case, and so
~ will be complex. A plot of the imaginary part of ~ versus mode number (for two
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different values of the complex index of refraction) indicates that the imaginary part

decreases monotonically. So we can say as before that convergence will start when we

have included all the imaginary exponential factors (i. e. when ~ becomes purely real).

But in this case ( converges very slowly to a real value, so in practice it is feasible to

use that mode number which makes the imaginary pat of [ arbitrarily small. We chose

the number of modes required for the imaginary part of ~ to become 0.1 as a function

of imaginary the part of the grating index. Using this criterion we can again find the

value of m where convergence starts. In our experiments we found that for metallic

gratings a very large number of modes were required.

It is difficult to quantify the savings associated with this technique because they

are very data dependent. But a simple characterization can be arrived at starting with

the complexity expressions developed in connection with method 1. The terms are all

proportional to (the final value of) m 3. If the technique outlined here permits us to stop

/3 modes short of where we otherwise would have, the terms will then be proportional

to (m – /?)3. Hence the ratio T of work in the new method to the old will be

(13) T%l–3(:)

if ~ << m (which is conservative since if @ is comparable to m the savings are greater).

So, for example, if ~/m = .1, we save 29%.

Method 4: The last source of improvement is not so much based on mathematics

as computer logic. When the height parameter is increased an incremental amount,

most of the calculation is the same as for the previous height. Hence by saving the
basis functions computed on the previous slice, we avoid most of the calculation. Since
we would have to compute on all slices once anyway for the greatest height examined,

this observation effectively removes the height dimension from the parameter space.

Put another way, we get this variation almost for free if we do the calculation in the

correct order. Since we might typically use 10 to 100 or more slices in a calculation,

this savings can be very substantial if significant variation in height is a goal of the

parameter study - we may save as much as two orders of magnitude in one of the most

costly portions of the code over the original approach.

3.2. Extension of RCWA to Three Dimensions. In addition to these im-
provements to the singly periodic case (i.e. the 2D case), we derived the RCWA equa-

tions for the doubly periodic (3D) case. This derivation is presented in Appendix 2.

Note that in this development the terminology “general two dimensional case” is still

used to refer to what would generally be described as the three dimensional problem
because the focus is on the extension of the “singly periodic” diffraction patterns con-

sisting of lines in the plane to the “doubly periodic)’ patterns shown.

3.3. Parallel Implementation. As indicated in the introductory text, the par-

allel implementation of the scattering is actually fairly straight forward. The code is

written in Fortran 77 with some calls to routines for’ message passing provided by the

machine vendors (Ncube or Intel SSC). A functional description of the main routine

prog. f follows. Complete source code is available from the first listed author.
8



After setting some initial parameters that control buffer sizes, the code sets up

several common blocks containing essential information used in many routines, e.g. the

type of machine the code is intended to run on (Sun workstation, the Ncube2 or the

Intel Paragon). Then the machine configuration is ascertained so that each processor
will know the number or processors in use, its own processor identification number, the

maximum processor id in use and its position in the pipeline discussed subsequently.

Processor O then opens the files for input and output.

All processors then call the routine get-paramset in order to obtain their portion

of the parameter space. This requires processor O to read the parameters from the input

file fin (this and similar names can be changed in prog. f ). Processor O packs these

parameters into a vector of minimal length which is broadcast to all other processors

using a standard binary fanout algorithm which is particularly good for the Ncube2’s

hypercube architecture, but which also works well on the Intel’s mesh architecture.

(Note however that the use of this algorithm does restrict the current implementation

to use a power of two number of processors.) The other processors receive the parameter

vector and unpack it into the correct parameter variable locations. These parameters

are then echoed to the screen and the output file fout by processor O.

Next timing registers are set up, and processor O steps through the total param-

eter range without doing the scattering calculations to count and echo the number of

variations in each parameter. The echoing serves as a useful check since it is very easy

to specify a parameter range other than the one intended. With it switched on, there

is no ambiguity about whether endpoints are included in the range, etc. The exact
variation to be computed over is explicitly calculated and displayed. The count is used

in mapping the parameter sets to processors and also in checking whether enough buffer

memory was allocated earlier. If not, the program exits with instructions to change pa-

rameters and recompile. If memory could be conserved in this problem by recompiling

with smaller parameters, this is also noted.

In the next phase, a variety of electromagnetic parameters are computed and the

main loops over the input parameters are set up. Each processor then picks out a

range of the parameter space based on its position as assigned in get -conf ig. The

electromagnetic computations described in [5] as modified in 3.1 are performed by each

processor with one set of parameters from within its range of the parameter space.

In the final phase of the computation, the diffracted powers are packed into a vector

and these are sent to processor zero in pipeline fashion. Processor O writes one result

to either the screen or fout or both (or neither) depending on how the io parameters

are set. The pipelining allows processor O to read the next result to be written while it

is writing the current one, thereby increasing efficiency over a polling approach. If any

processor has parameter sets yet to compute on, the process is repeated until these are

exhausted. Finally timing information collected on processor O (which will certainly be

the last to finish given its io responsibilities) is written to the screen or fout,

3.4. Using the Parallel Code. The code is packaged for distribution along with

appropriate makefiles and sample input and output files. This section describes use of

the code in that context
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As indicated earlier, the appropriate material, optical and geometric properties are

specified in an input file, fin. The ones most commonly varied are the parameters which

describe the geometry of the diffraction grating. The lines of the diffraction grating are

described by their width, depth (or, interchangeably, their “height”) and the angle of the

sidewalls (left-right symmetry is assumed). Another important geometric parameter is

the incidence angle of the laser. These four parameters are those typically varied in the

generation of the table of forward scattering patterns. The sample input file f in. small

highlights these by capitalizing the parameter names in the comments. On the same

line the range of each parameter is specified by a start, end and increment value (in

that order). The sample input file fin. big has reasonable parameter ranges which

generates 108 distinct scattering computations.

As described earlier, the resolution of the computation and output is controlled by

parameter values set in the main routine cent ained in file prog. f. In particular, the

parameter n (set on line 36) controls the number of diffracted power orders (different

angles) at which the power is computed. The run time is cubic in this parameter. A
value of 10 is a reasonable starting point for experimentation. The power spectra will

have 2n+ 1 entries, though often many or most of these will be zero. If you don’t want to

have all of them printed, change the nsideorders parameter on line 120 (By convention

each sideorder has a positive and negative instantiation, so the number actually printed

is 2 * nsideorders + 1.)

The output level is controlled by the flag outmode set on line 56. As the comments

above it indicate, increasing numbers mean more detailed output. For big runs you

probably want to set outmode to 1. Lastly, where the output is printed is controlled by
two more flags, toscr set on line 57 and tofout set on line 58. If toscr is TRUEthe

output is written to the screen. If tofout is TRUEmost of the output (except for some

unimportant echoing of the parameter ranges) is written to the f out.

To compile on the sun you want to execute the command: make -f makef i.le. Sun

The executable is written to the file prog, so to run you just type prog.

You can also compile for the Ncube2 with makef ile. ncube or the Intel Paragon

with makef ile .,int el. You just have to change the machine flag on line 155 of prog. f

if you want to use the Ncube or Intel. To execute you then need to apply

command on the Ncube or the yod command on the Intel to the executable.

4. Results.

the xnc

4.1. Simulation Results. Figure (1) shows a comparison of predicted and mea-

sured diffraction grating linewidth data. Alphastep is a standard measuring technique

that drags a stylus across the grating, destroying it in the process. The Chemomet-

rics approach uses the forward scattering code here in conjunction with a linear least

squares technique to solve the inverse problem. The neural network approach also uses

the forward scattering code and a neural network pattern matching code developed in

conjunction wit h this project to solve the inverse problem. Note the excellent agreement

between the measured linewidth of 0.90 microns and the predicted Iinewidth (by either

technique) of 0.88 microns.
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Height measured by alphastep = 0.90 microns

Fig. 1. Comparison of measured linewidth (solid line) and Iinewidt h pre-

dicted by the computational technique of this report (dotted line).

Excellent agreement was found between measured and predicted

Iinewidths.
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Fig. 2. Time to complete a fixed problem as a function of number of

Xcube2 processors applied.

4.2. Parallel Performance. Figure (2) shows the time to comple~e a relatively

large, fixed problem as a function of the number of Ncube processors applied. This

illustrates expected, classical behavior. The execution time is dri~en down si=mificantly,

but the efficiency of the computation degrades as the number of processors applied

increases as shown in fig. (3) (note the horizontal axis is now h~-percube dimension. i.e.

logz(P) where P is the number of processors since this ser~es to clarify the plot. This

degradation is directly attributable to the increase in io o~-erhead as a fraction of the

total time spent since that is the entire serial content of the pro~am; see fig. (4). By

plotting the log of the execution time against hypercube dimension we can see from the

slope of the curve that the program retains good scalability until about 2.56 processors

at. which point efficiency begins to degrade more noticeably.

Figure (6) shows performance on a problem whose size scales with the number of

processors applied. So each processor always does (in this case) one parameter set.

Xotice here that execution time stays very nearly constant from 1 to 1024 processors.

‘This again is the expected behavior for a well designed code in which the serial work

stays in proportion to the work that can be done in parallel. l\’e see from fig. (7)

that this translates into high “scaled” efficiency across the entire range of hypercubes

a~-ailable. There is a slight degradation in efficiency because. as fig. (S) shows? the io

o~erhead does increase. This is primarily because with more parameter sets. there are

more results to write back to a file. hTevertheless, 90’70 efficiency on this size problem

(order a minute execution time) at 1024 processors is very good. Jf:e could easily make

that near unit effiency by running problems near the memor~- capacity of The individual

processors. Then nearly the same io overhead could be amortized over run times of

hours in length.
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Fig. 4. Input/output overhead as a function of Jcube2 hypercube dimen-

sion.
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5. Conclusions. We were able to dramatically reduce the compute time needed

to check the quality of test patterns on integrated circuits using laser diffraction. A

summary of the various improvements in the computational technique is shown in ta-

ble (1).

Tab

Improvement

Method 1

Method 2

Method 3

Method 4

Parallelism

Net effect

Expression I Typical Net Impact
R-1 1.5

8 x time.eig-solve 1.5

T 1.4

nslices 50
par.eff x nprocs 1000

157,000

>1. Speedups resulting from the various improvements to the orig-
inal engineering code.

As a result of this project, a number of publications were generated which have

advanced work in the field of laser diffraction: [8, 7, 4, 9, 2]. Further detail on the work

can be found here and in the previously cited works.
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Itllrudt-lclion

‘llw pmccdurc tievcloped forthe so]

cnn he conveniently extended to be appl

scattering sufiace is, given in the figLIre

ion olline gratings using coupled wave analysis

ab~e in U-Egeneral two dimension case. The

love and is assumed to be infinite dimensional

. .
W’IUI apertures along [wu axis tit an an:

polarization case the If< Hnclfly Compor

scpnr:t!ely in general aIId Im[h components

e U to each other. Similar to the arbitrary

IILSof the dcct.ic field can not bc considered

ave to be considered sinmltw~eously to obtain a
SOILItion fm the scattered field. The incidc I fielcl is assunled LObe an arbitrarily polarized

i)I:inc Ivavc c)hliqLlclyincident on the scat’

ProldcIn Fmmllllalif)n

A :cneril rcprescnt;~[ion ufthe mtul (

rer placed in the z = Oplane.

:ctric field in regions 1 and 3 can be writlcn as,

I
Exp(- j&.2),fl#, y).

W’llcl”e.

J,,(x.-v) = Exp(-.j(i’i,,t..ix+ 11.jy)).

*

19



kl,,li 2Jrm
= i-’..; – —

d’

l:or [hc ~r:tnsmitt.ed f-iclds, we have that

‘=-= [52,,1(Z)J

“1’hc refractive index is periodic in x i d y and its Fourier Series expansion is

()

tip
c (.x, y) = % ~ % ~-v -i~x

P
Al]plying ,Maxwcll’s cquaLions

Expanding the curl cquationxwehave,

20



d.E2, aE2y =. .- .. ..—
dy az

- jw~~~

dfi~x t3E2,
. —_

a~ ax = –.i~p&2y

dE2y r3Eh
—. —

ax dy =
– jq&12Z

Substituting fbr the field expression:

q (-J1..WA) - (-jkO)&Jz) – ~”
1

~; ~x(z) Exp(- jkZoz)&(x, y)

1?1

= –.P-wo ~ UJz)Exp(-j, :)zym(x, y)

m
r

q
(–jz~n,i)szm(q– (-jkJsm(z) -

m

m

Z[(-j~bA$77Jz)
1

– (– jI1.j)Sm(z) E
m

m

And for the rnugnetic curl equation

Z[(–j:l.$)~d~)- (– jLdUym(z) - 1$ UP(Z) Exp(– jkfi’)f~(x, y)

(-jkfiZ~m(X,Y)

m ,JJL

m P

q
(--jz,m.i)uzm(z) - (– jk@l=m(z) -

., m

a

1

— u=(z) Exp(–j&)z)GJ(4Y)
az

21



= -@O~ ~syp(z)~m+~
mp

Z[ 1
(–xlm.wyn(z) – (-I-LWxm(z) J’

m

= jm~ ~s,,(z)%.pm
m~

1S,m(,z)= — ~[(–Lp.wyp(z) + (i
(X()

P

1 l–z ()tipEp Exp jT
~ ky> ~) ‘Zp
.

* s==(z) =
[
(–j~l~AL(z) – (–k

[
+, SYm(z) = (–jz*.j)szm(z) – (–jk~):

.

1
l),.,(z) = —

[
(Ilmti)sym(z) – (ll.j)l!

@p{)

: Uxm{z) =
[

(–j~lm?i)uzm(z) - (-jk:
.

&~y)l(~) = [ (–Lmh’l(d – (–j~.

cp(–jkz~ym(x, y)

qi-jk,@)&(4 y)

(-jk#ym(x,”y)

1-W&7(d ●)q

$=(2)
1

– ju~tlw(z)

()],~ z + jrq@m(z)

,
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Eliminating the components of t] : electric and magnetic fields normal to tl

Imunclary (,i.e z components ) results in a et of four first-order coupled wave equation!

– (- jkfi).$m(z) – ja.yd ,Jz)

+ Sy,,,(z) =
– jZ, .j ~[(-&wJyp(z)

1
- (Zip.jw.p(z) G-p

CLE()
P

- (–)’kzd$nt(d + ju/foi” m(z)
.

: Urn(z) = ‘Jk~,t,.x [
(L?#)sym(4– Lm?n(z)

quo 1
–(–.PLWA) + j@~O ‘~ ~yp(z)~m.p

-)

: Uy,,,(z) =
[

‘“~kl“;(I,mt.i)sym(z)- ‘ ~l.;)%(z)
~ cop[) 1

–(–j&)Uy~(z)–j~~[}~~SV(Z)E”,~
#

In order m solve for fie sca~tered fie s, the infinite representatioIl for the electric a]

magnc[ic fields has to be first truncated, o that the indices now run from –N to N. Tl

mmcation implies that the electric or ma wtic field is now represented by a finite set
fburier coefficients. Total number of un nowns to be solved for is 2*(2N + 1). The

coc.f’f.ic.ein~.sare mapped into a single vect ~-in the following manner, Define a vector ~
kngrh 2*(,2N+1 ) ,

{

R x(i - [h’+]])’ vi ~
F[i] =

/’/y(i _~*lN+, ,), Vi s..

The vector ~, ~, ~ are similarly defir:

$Ii] =
{

(i - [N+ll), v’

(i -3*[N-FIJ), v’

2N+1,

W+l< i 5 2*[21V+ I].

5. To make things easier, define a mapping ~

s 2N+1,

,S.t 2N+1C i s 2*[2N+ 1].
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‘1’lw f(mr CXmpkd wave equations n

s’

1[A@c~~’:
@F GHy’

y[l:Q,IKcD.

where @ is Ihe IILIll nlftlrix aIIclA through (

—

y be wrilten in remix foml as

:IIYJmatrices defined as follows. The dimensir

sub-matrix eIemenG are defined tis follows

[he ident.ity matrix.

- $?(I)

(y) - $(l) = (m-i)
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‘1’lIe above mit~rix equation is solve; using the state-variable method as before. “Ike
next step is LOmatch the electric and m; ,~etic fields at the boundaries and this is very
similar tu the line grating case.

,

Coupled Wave Solution

MA42

&’i’~i(Z) =

JSyi(Z) =

(0/4( ) ‘V,~i(Z)
In=l
MM2

W is the cigenvec[or Il]atrix. w] is a sub n [rix that has M2 rows and MM2 columns. Amis

the mth eigenvaluc. There are TvlM2total t igenvalues.

Boundary Conditions Applications

.
The boundary c[mditions that have I tipplieed are the fo]lowing.

i) Continuity of Tangential Elect c and Tangential Magnetic fields at the z=O
* Ix)llndary.

ii) Continuity of “Ilmgential Electri: md Tangential Magnetic fields at the boundary
between the grwing and the underlying k m at the z = d boundary.
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At (hc z = (1 hrmnd:iry

MM2

Udi(]+ Rm. = z CWIM’ljm

m=1
A4M2
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z = d Boundary

Now we need to calculate the tangential lagnetic fields in region 3 .
aE3,— _
ay

af!3x-_
az

aEJx- +
dx

aE3z

az

H3X =

+

aE3y=
az

–jm@f~

aE3z

ax =
–W0H3y

aE3y ~ aE3,
L3y a~ =

o

M2

—
~((

)
- jI1ii)Td – (– j~l.~);’ ; Exp(- jz3i.l(z - d)&(x, Y)

i= 1

At. z = d, this becomes

+
k3i,.

~

i

- ‘yi ik Y)
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*

At z = d boundary

. Lf2

‘1’he boundary condj [ions can then be wri :11as

m=]
AfM2

MM2

m=1

m= 1
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